નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક સિક્કાને ત્રણ વાર ઉછાળવામાં આવે છે.
A coin has two faces: head $(H)$ and tail $(T)$.
When a coin is tossed three times, the total number of possible outcome is $2^{3}=8$
Thus, when a coin is tossed three times, the sample space is given by :
$S =\{ HHH ,\, HHT ,\, HTH ,\, HTT , \,THH , \,THT , \,TTH , \,TTT \}$
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
ઓછામાં ઓછી $2$ છાપ મળે.
જો $E$ અને $F$ બે સ્વતંત્ર ઘટના છે કે જેથી $E$ અને $F$ બંને બને તેની સંભાવના $\frac{1}{12}$ થાય અને $E$ કે $F$ પૈકી એકપણ ન બને તેની સંભાવના $\frac{1}{2}$ હોય તો $\frac{{P(E)}}{{P\left( F \right)}}$ ની કિમંત મેળવો.
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B$ પરસ્પર નિવારક છે.
ત્રણ વિર્ધાર્થીંઓ $A, B,$ અને $C$ ને ગણિતનો એક કોયડો આપવામાં આવે છે અને તેમની કોયડો ઉકેલવની સંભાવના અનુક્રમે $1/2, 1/3$ અને $1/4$, તો કોયડો ઉકેલવાની સંભાવના કેટલી?
એક કોથળામાં એક પાસો લાલ રંગનો, એક સફેદ રંગનો અને અન્ય એક પાસો ભૂરા રંગનો રાખ્યો છે. એક પાસો યાદચ્છિક રીતે પસંદ કર્યો છે અને તેને ફેંકવામાં આવે છે પાસાનો રંગ અને તેની ઉપરની બાજુ પરની સંખ્યા નોંધવામાં આવે છે, આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.