Two dice are thrown. The events $A,\, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

State true or false $:$ (give reason for your answer)

Statement : $A=B^{\prime}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$

$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$

It is observed that

$B^{\prime}=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3), \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}=A$

Thus, the given statement is true.

Similar Questions

Two dice are thrown simultaneously. What is the probability of obtaining sum of the numbers less than $11$

A number is chosen from first $100$ natural numbers. The probability that the number is even or divisible by $5$, is

A man and his wife appear for an interview for two posts. The probability of the husband's selection is $\frac{1}{7}$ and that of the wife's selection is $\frac{1}{5}$. What is the probability that only one of them will be selected

Two dice are thrown. The events $A, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

Describe the events $A \cap B^{\prime} \cap C^{\prime}$

A die has two faces each with number $^{\prime}1^{\prime}$ , three faces each with number $^{\prime}2^{\prime}$ and one face with number $^{\prime}3^{\prime}$. If die is rolled once, determine $P($ not $3)$