दो ${r_A}$ और ${r_B}$ त्रिज्याओं $({r_B} > {r_A})$ के संकेन्द्रीय पतले चालक गोलीय कोशों (spherical shells) $A$ और $B$ को ${Q_A}$ और $ - {Q_B}$ $(|{Q_B}|\, > \,|{Q_A}|)$ आवेश दिया गया है। केन्द्र से गुजरती हुयी रेखा के साथ-साथ (along) विद्युत क्षेत्र किस ग्राफ से अनुरुप परिवर्तित होगा
$10 \,cm$ त्रिज्या के किसी गोलीय चालक पर $3.2 \times 10^{-7}\, C$ आवेश एकसमान रूप से वितरित है।इस गोले के केन्द्र से $15\, cm$ दूरी पर विध्यूत क्षेत्र का परिमाण क्या है ?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
चित्र में, धनात्मक आवेश की एक बहुत बड़ी समतल शीट दर्शायी गयी है। आवेश वितरण से $l$ व $2 l$ दूरी पर दो बिन्दु $P _1$ व $P _2$ है। यदि $\sigma$ पृप्ठ आवेश घनत्व है, तब $P _1$ व $P _2$ पर विद्युत क्षेत्र $E _1$ व $E _2$ के परिमाण क्रमश: है।
त्रिज्या $'a'$ तथा $'b'$ के दो एक-केन्द्री गोलों (चित्र देखिये) के बीच के स्थान में आयतन आवेश-घनत्व $\rho=\frac{A}{r}$ है, जहाँ $A$ स्थिरांक है तथा $r$ केन्द्र से दूरी है। गोलों के केन्द्र पर एक बिन्दु-आवेश $Q$ है। $'A'$ का वह मान बताये जिससे गोलों के बीच के स्थान में एकसमान वैध्युत-क्षेत्र हो:
गाउस नियम का उपयोग किए बिना किसी एकसमान रैखिक आवेश घनत्व $\lambda$ के लंबे पतले तार के कारण विध्युत क्षेत्र के लिए सूत्र प्राप्त कीजिए
अपरिमित लम्बाई और $R$ त्रिज्या के एक ठोस बेलन पर एक समान आयतन-आवेश-घनत्व $\rho$ है। इसमें $R / 2$ त्रिज्या एक खोखला गोलीय-कोष बेलन के अक्ष पर केन्द्रित है (चित्र देखिये)$।।$ अक्ष से $2 \ R$ दूरी पर स्थित बिन्दु $P$ पर विधुत $\frac{23 p }{16 k \varepsilon_0}$ से दिया जाता है। तब $k$ का मान क्या है ?