$10 \,cm$ त्रिज्या के किसी गोलीय चालक पर $3.2 \times 10^{-7}\, C$ आवेश एकसमान रूप से वितरित है।इस गोले के केन्द्र से $15\, cm$ दूरी पर विध्यूत क्षेत्र का परिमाण क्या है ?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
$1.28 \times 10^{7} N / C$
$1.28 \times 10^{4} N / C$
$1.28 \times 10^{5} N / C$
$1.28 \times 10^{6} N / C$
एक गोलीय सममिती आवेश वितरण आवेश घनत्व का निम्नलिखित विचरण रखता है : $\rho(r)=\rho_{o}\left(1-\frac{r}{R}\right) r < R$ के लिए $\rho( r )=0 \quad r \geqslant R$ के लिए जहाँ $r$ आवेश वितरण के केन्द्र से दूरी हैं और $\rho_{ o }$ एक स्थिरांक है। एक अन्तः बिन्दु $( r < R )$ पर विद्युत क्षेत्र है
वैद्युत क्षेत्र ${r^o}$ के साथ परिवर्तित होता है
एक गोलीय सममिति में वितरित आवेश के परिवर्तनशील आवेश घनत्व को निम्न समीकरण द्वारा निरूपित किया गया है।
$\rho(r)=\left\{\begin{array}{ll}\rho_0\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
जहाँ, $r ( r < R )$ केन्द्र $O$ से दूरी है, (चित्र में दर्शाये अनुसार) $P$ बिन्दू पर विद्युत क्षेत्र का मान होगा :
एक पतले अनन्त आवेशित तल एवं एक अनन्त रेखीय आवेश के आवेश घनत्व क्रमशः $+\sigma$ एवं $+\lambda$ हैं, जो कि एक-दूसरे से $5 \mathrm{~m}$ की दूरी पर एक-दूसरे के समानान्तर रखे हैं। रेखीय आवेश से आवेशित तल की तरफ क्रमशः $\frac{3}{\pi} \mathrm{m}$ एवं $\frac{4}{\pi} \mathrm{m}$ की लम्बवत दूरियों पर बिन्दू ' $P$ ' एवं ' $Q$ ' हैं। ' $E_P$ ' एवं ' $E_Q$ ' क्रमशः बिन्दु ' $P$ ' एवं ' $Q$ ' पर परिणामी विद्युत क्षेत्र की तीव्रताओं के परिमाण हैं। यदि $2|\sigma|=|\lambda|$ के लिए $\frac{E_p}{E_Q}=\frac{4}{a}$ है तो $a$ का मान_________है।
त्रिज्या $R$ के एक समान गोलीय आयतन आवेश वितरण (uniform spherical volume charge distribution) को लीजिए। निम्नलिखित में से कौन सा ग्राफ गोलक (sphere) के मध्य से $r$ की दूरी पर विद्युत क्षेत्र (electric field) $E$ का परिमाण (magnitude) निरूपित करता है ?