बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है
$\frac{{{k_1}}}{{{k_2}}}$
$\sqrt {\frac{{{k_1}}}{{{k_2}}}} $
$\frac{{{k_2}}}{{{k_1}}}$
$\sqrt {\frac{{{k_2}}}{{{k_1}}}} $
चित्र में दिखायी गई स्प्रिंगों के दोलन की आवृत्ति होगी
नीचे दिये चित्र में यदि $m$ द्रव्यमान के पिण्ड को विस्थापित कर दें तो इसकी आवृत्ति होगी
एक क्षैतिज घर्षण रहित मेज पर एक ब्लॉक रखा है। इस ब्लॉक का द्रव्यमान $m$ है और दोनों ओर स्प्रिंग् लगी हैं जिनके बल स्थिरांक ${k_1}$ और ${k_2}$ है। यदि इस ब्लॉक को थोडा विस्थापित करके छोड़ दिया जाये तो दोलन की कोणीय आवृत्ति होगी
किसी चिकने नत समतल पर द्रव्यमान $M$ दो स्प्रिंग के मध्य में चित्रानुसार रखा हुआ है तथा स्प्रिंगों के दूसरे सिरे दृढ आधारों से जुडे़ हैं। प्रत्येक स्प्रिंग का बल नियतांक $K$ है। यदि स्प्रिंग के भार नगण्य हो तब इस द्रव्यमान की सरल आवर्त गति का आवर्तकाल होगा
एक द्रव्यमान $M$ एक नगण्य द्रव्यमान की स्प्रिंग से लटक रहा है। स्प्रिंग को थोड़ा सा खींच कर छोड़ने पर द्रव्यमान आवर्तकाल $T$ से दोलन करने लगता है यदि द्रव्यमान में वृद्धि $m$ कर दी जाये तो आवर्तकाल $\frac{{5T}}{3}$ हो जाता है। तो $\frac{m}{M}$ का मान है