एक द्रव्यमान $M$ एक नगण्य द्रव्यमान की स्प्रिंग से लटक रहा है। ​स्प्रिंग को थोड़ा सा खींच कर छोड़ने पर द्रव्यमान आवर्तकाल $T$ से दोलन करने लगता है यदि द्रव्यमान में वृद्धि $m$ कर दी जाये तो आवर्तकाल $\frac{{5T}}{3}$ हो जाता है। तो  $\frac{m}{M}$ का मान है

  • [AIEEE 2003]
  • [AIIMS 2016]
  • A

    $\frac{5}{3}$

  • B

    $\frac{3}{5}$

  • C

    $\frac{{25}}{9}$

  • D

    $\frac{{16}}{9}$

Similar Questions

एक भार रहित स्प्रिंग जिसकी लम्बाई $60\, cm$ तथा बल नियंताक $100\, N/m$ है, किसी चिकनी मेज पर मुक्त अवस्था में सीधी रखी है। इसके दोनों सिरे दृढ़तापूर्वक बँधे हैं। $0.25\, kg$ द्रव्यमान को ​स्प्रिंग के मध्य में जोड़कर लम्बाई के अनुदिश थोड़ा सा विस्थापित किया जाता है, तो द्रव्यमान का दोलनकाल है

किसी नगण्य द्रव्यमान के स्रिंग से लटकाये गये $M$ द्रव्यमान का दोलनकाल $T$ है। यदि इसके साथ ही एक अन्य $M$ द्रव्यमान लटका दिया जाय तो दोलनकाल हो जायेगा

  • [AIPMT 2010]

एक ​स्प्रिंग का ​स्प्रिंग नियतांक $10\,N/m$ है यह स्प्रिंग $10\,kg$ द्रव्यमान के साथ सरल आवर्त गति करती है, यदि किसी क्षण पर इसका वेग $40\,cm/sec$ है तो इस स्थिति में इसका विस्थापन ..... $m$ होगा (यहाँ आयाम $0.5\,m$ है)

एक $6.4\, N$ के बल द्वारा एक ऊध्र्वाधर स्प्रिंग की लम्बाई में $0.1 \,m$ की वृद्धि होती है। ऊध्र्वाधर ​स्प्रिंग से कितना .... $kg$ द्रव्यमान लटकाया जाये ताकि यह $\left( {\frac{\pi }{4}} \right)sec$ के आवर्तकाल से दोलन करे

$k$ बल नियतांक की एक एकसमान  स्प्रिंग को $1:2$ के दो भागों में बाँटा गया है, तो छोटे व बडे़ भाग के बल नियतांकों का अनुपात है