नीचे दिये चित्र में यदि $m$ द्रव्यमान के पिण्ड को विस्थापित कर दें तो इसकी आवृत्ति होगी

94-5

  • A

    $n = \frac{1}{{2\pi }}\sqrt {\left( {\frac{{{k_1} - {k_2}}}{m}} \right)} $

  • B

    $n = \frac{1}{{2\pi }}\sqrt {\left( {\frac{{{k_1} + {k_2}}}{m}} \right)} $

  • C

    $n = \frac{1}{{2\pi }}\sqrt {\left( {\frac{m}{{{k_1} + {k_2}}}} \right)} $

  • D

    $n = \frac{1}{{2\pi }}\sqrt {\left( {\frac{m}{{{k_1} - {k_2}}}} \right)} $

Similar Questions

चित्र $(A)$ में $k$ स्प्रिंग स्थिरांक वाली दो स्प्रिंगों से जुड़े ' $m$ ' द्रव्यमान के साथ ' $2\,m$ ' द्रव्यमान जुड़ा हुआ है। चित्र $(B)$ में, क्रमशः ' $k$ ' एवं ' $2\,k$ ' स्प्रिंग स्थिरांक वाली दो स्प्रिंगों से दव्यमान ' $m$ ' जुड़ा हुआ है। यदि द्रव्यमान ' $m$ ' को $(A)$ एवं $(B)$ में ' $x$ ' क्षैतिज दूरी से विस्थापित करके छोड़ दिया जाता है, तो चित्र $(A)$ एवं $(B)$ के क्रमशः आवर्तकाल $T _1$ एवं $T_2$ निम्न सम्बंध द्वारा निरूपित होंगे :

  • [JEE MAIN 2022]

बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है

  • [IIT 1988]

एक स्प्रिंग दोलक की आवृत्ति दोगुनी करने के लिए हमें

$m$ द्रव्यमान का एक पिण्ड एक स्प्रिंग पर $f = \frac{\omega }{{2\pi }}$ आवृत्ति से सरल आवर्त गति करता है। यदि ​स्प्रिंग का बल नियतांक $k$ और आयाम $A$ है, तब

निचे दिए गए चित्र में, $\mathrm{M}=490 \mathrm{~g}$ द्रव्यमान का एक गुटका एक घर्षणरहित मेज पर रखा है, एवं समान स्प्रिंग नियतांक $\left(\mathrm{K}=2 \mathrm{~N} \mathrm{~m}^{-1}\right)$ वाली दो स्प्रिंगों से जुडा है। यदि गुटके को ' $\mathrm{X}$ ' $\mathrm{m}$ की क्षैतिज दूरी से विस्थापित किया जाता है, तो $14 \pi$ सेकन्ड में इसके द्वारा पूर्ण किए गए दोलनों की संख्या होगी।

  • [JEE MAIN 2023]