यदि द्रव्यमान, लम्बाई और समय के स्थान पर समय $( T )$, वेग $( C )$ तथा कोणीय संवेग $( h )$ को मूलभूत राशियाँ मान लें तो द्रव्यमान की विमा को इन राशियों के रूप में निम्न तरीके से लिखेंगे
$\left[ M \right] = \left[ {{T^{ - 1}}\,{C^{ - 2}}\,h} \right]$
$\left[ M \right] = \left[ {{T^{ - 1}}\,{C^2}\,h} \right]$
$\left[ M \right] = \left[ {{T^{ - 1}}\,{C^{ - 2}}\,{h^{ - 1}}} \right]$
$\left[ M \right] = \left[ {T\,{C^{ - 2}}\,h} \right]$
यदि एक साईकिल चालक वृत्ताकार पथ पर गति करते समय ऊध्र्वाधर से $\theta $ कोण से झुक जाता है, तब $\theta $ का मान सूत्र $\tan \theta = \frac{{rg}}{{{v^2}}}$ (जहाँ संकेतों के सामान्य अर्थ हैं) द्वारा प्राप्त किया जाता है। यह सूत्र
सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची $I$ | सूची $II$ |
$P.$बोल्ट्समान नियतांक | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ श्यानता गुणांक | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ प्लांक नियतांक | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ ऊष्माता चालक | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
यदि $E , L , M$ तथा $G$ क्रमशः ऊर्जा, कोणीय संवेग, द्रव्यमान तथा गुरूत्वाकर्षण नियतांक को प्रदर्शित करते हों, तो सूत्र $P = EL ^{2} M ^{-5} G ^{-2}$ में $P$ की विमा होगी।
विधुतचुम्बकीय सिद्धांत के अनुसार विद्युत् और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि [ $\left.\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुटांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ SI मात्रकों (units) में दी गयी हैं ।
($1$) $[E]$ और $[B]$ के बीच में संबंध है
$(A)$ $[ E ]=[ B ][ L ][ T ]$ $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$ $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$ $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$
($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है
$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$ $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$ $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$ $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है