The variance $\sigma^2$ of the data is $ . . . . . .$
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
$28$
$29$
$27$
$25$
The variance of $20$ observations is $5 .$ If each observation is multiplied by $2,$ find the new variance of the resulting observations.
If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are $56$ and $66.2$ respectively, then $\alpha^2+\beta^2$ is equal to
Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let the mean, the mean deviation about the mean and the variance of the $5$ observations $9$,$25$, $a$, $b$, $c$ be $18$,$4$ and $\frac{136}{5}$, respectively. Then $2 \mathrm{a}+\mathrm{b}-\mathrm{c}$ is equal to ..............
The mean and variance of $20$ observations are found to be $10$ and $4,$ respectively. On rechecking, it was found that an observation $9$ was incorrect and the correct observation was $11$. Then the correct variance is
The average marks of $10$ students in a class was $60$ with a standard deviation $4$ , while the average marks of other ten students was $40$ with a standard deviation $6$ . If all the $20$ students are taken together, their standard deviation will be