The variable $x$ satisfying the equation $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x}  = \sqrt 3$ belongs to the interval

  • A

    $\left[ {0,\frac{\pi }{3}} \right]$

  • B

    $\left( {\frac{\pi }{3},\frac{\pi }{2}} \right)$

  • C

    $\left[ {\frac{{3\pi }}{4},\pi } \right)$

  • D

    non-existent

Similar Questions

The number of solutions of $tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ for $\theta$ in $(0, 2\pi )$ is :

One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval

  • [KVPY 2017]

The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is

If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is

Solve $\cos x=\frac{1}{2}$