If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is
$n\pi $
$\frac{{n\pi }}{6}$
$n\pi - \frac{\pi }{4} \pm \alpha $
$\frac{{n\pi }}{2}$
The equation $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ has
Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$
If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
If $\cos {40^o} = x$ and $\cos \theta = 1 - 2{x^2}$, then the possible values of $\theta $ lying between ${0^o}$ and ${360^o}$is