Solve $\cos x=\frac{1}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $\cos x=\frac{1}{2}=\cos \frac{\pi}{3}$

Therefore $\quad x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

Similar Questions

If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $

The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :

If $tanA + cotA = 4$, then $tan^4A + cot^4A$ is equal to

The general solution of the trigonometric equation $\tan \theta = \cot \alpha $ is

The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is

  • [KVPY 2014]