One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
$\left(0^{\circ}, 10^{\circ}\right]$
$\left(10^{\circ}, 20^{\circ}\right)$
$\left(20^{\circ}, 30^{\circ}\right)$
$\left(30^{\circ}, 40^{\circ}\right]$
The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is
For which value of $x$ ; $cosx > sinx,$ where $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$
The number of real solutions $x$ of the equation $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$ is
The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is