The values of $z$for which $|z + i|\, = \,|z - i|$ are
Any real number
Any complex number
Any natural number
None of these
If $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ and $|2z_1 +3z_2 +4z_3| =9$ ,then value of $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ is equal to:-
If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals
If ${z_1},{z_2} \in C$, then $amp\,\left( {\frac{{{{\rm{z}}_{\rm{1}}}}}{{{{{\rm{\bar z}}}_{\rm{2}}}}}} \right) = $
Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.
Statement $1$ : $z$ is a real number
Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$