Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.

Statement $1$ : $z$ is a real number

Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$

  • [JEE MAIN 2013]
  • A

    Statement $1$ is true Statement $2$ is true;
    Statement $2$ is a correct explanation for Statement $1$.

  • B

    Statement $1$ is false; Statement $2$ is true

  • C

    Statement $1$ is true, Statement $2$ is false

  • D

    Statement $1$ is true; Statement $2$ is true;
    Statement $2$ is not a correct explanation for Statement $1$

Similar Questions

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [AIEEE 2002]

If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is

  • [JEE MAIN 2024]

If ${z_1}{\rm{ and }}{z_2}$ be complex numbers such that ${z_1} \ne {z_2}$ and $|{z_1}|\, = \,|{z_2}|$. If ${z_1}$ has positive real part and ${z_2}$ has negative imaginary part, then $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$may be

  • [IIT 1986]

If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then

The product of two complex numbers each of unit modulus is also a complex number, of