If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
$2$
$3$
$4$
$5$
Let ${z_1}$ be a complex number with $|{z_1}| = 1$ and ${z_2}$be any complex number, then $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
$(z + a)(\bar z + a)$, where $a$ is real, is equivalent to
For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is
If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $| z_1 | = | z_2 |=1$ and $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies
Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is