If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals
$0$
$\frac{\pi}{2}$
$\frac{3\pi}{2}$
$\pi $
If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is
Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation
$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is
If ${z_1} = 1 + 2i$ and ${z_2} = 3 + 5i$, and then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ is equal to
The values of $z$for which $|z + i|\, = \,|z - i|$ are