$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$ = . . .
$3 - x + y$
$(1 - x)(1 + y)$
$xy$
$ - xy$
સુરેખ સમીકરણ સંહતિ $x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$ ધ્યાને લો, જ્યાં $\lambda, \mu \in \mathbb{R}$. તો નીચેના પૈકકી કયું વિધાન સાચું નથી?
જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે $det (A)$ ની કિમંત મેળવો.
જો $a \ne p,b \ne q,c \ne r$ અને $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ = $0,$ તો $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $
$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.
$x$ ની . . . કિમત માટે $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0$ મળે.