જો $[.]$ , $ \{.\} $ અને $sgn$$(.)$ અનુક્રમે  મહતમ પૃણાંક , પૃણાંક વિધેય, અને ચિન્હ વિધેય છે તો

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ ની કિમંત મેળવો.

  • A

    $ - 6 + \frac{{5\pi }}{3} - \frac{{{\pi ^2}}}{3}$

  • B

    $\frac{{5\pi }}{3} - \frac{{{\pi ^2}}}{3} - 5$

  • C

    $\frac{{5\pi }}{3} + \frac{{{\pi ^2}}}{3} + 6$

  • D

    $ - 5 + \frac{{{\pi ^3}}}{3} - \frac{{5{\pi ^2}}}{3}$

Similar Questions

નીચેની સુરેખ સમીકરણ સંહતિ  $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$  ;$x-y+4 z=8$

  • [JEE MAIN 2021]

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$    ના બીજ મેળવો.

અહી $[\lambda]$ એ મહતમ પૃણાંક વિધેય છે.  $\lambda$ ની કિમંતો નો ગણ મેળવો કે જેથી સમીકરણ સંહતિ  $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ નો ઉકેલ મળે.

  • [JEE MAIN 2021]

જો સમીકરણ સંહતિ

$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $

$ x+(\cos \alpha) y+(\sin \alpha) z=0 $

$ x+(\sin \alpha) y-(\cos \alpha) z=0$

ને એક અસામાન્ય ઉકેલ હોય, તો $\alpha \in\left(0, \frac{\pi}{2}\right)$ બરાબર ............ છે.

  • [JEE MAIN 2024]

$\lambda$ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણ સંહતિઓ $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ નો ઉકેલ ખાલીગણ થાય.

  • [JEE MAIN 2022]