ધારોકે $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$. જો કોઈ $x, y, z \in \mathbb{R} x y z \neq 0$
માટે $x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$ હોય, તો $6 \alpha+4 \beta+\gamma=$..............
$55$
$56$
$54$
$31$
$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $
જો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ તો $x =$
$'a'$ ની . . . . કિમંત માટે સમીકરણો $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ ને શૂન્યતર ઉકેલ મળે.
જો $S$ એ $k$ એ બધીજ વાસ્તવિક કિમંતો નો ગણ છે કે જેથી રેખાઓની સહંતિ $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ એ એકાકી ઉકેલ ધરાવે છે તો $S$ એ . . . .
$k$ ની કઈ કિમંત માટે આપેલ સમીકરણોનો શૂન્યતર ઉકેલ મળે ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$