$\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$ = . . .
$20$
$10$
$0$
$250$
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $
જો રેખાઓ $2 x-y+3=0,6 x+3 y+1=0$ અને $\alpha x+2 y-2=0$ ત્રિકોણ ન બનાવે તેવી $\alpha$ ની તમામ વાસ્તવિક સંખ્યાઓના વર્ગનો સરવાળો $p$ હોય, તો $p$ અથવા તેનાથી નાનો મહત્તમ પૂણાંક___________ છે.
જો $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ હોય તો $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ ની કિમંત મેળવો.
જો $\left| \begin{gathered}
- 6\ \ \,\,1\ \ \,\,\lambda \ \ \hfill \\
\,0\ \ \,\,\,\,3\ \ \,\,7\ \ \hfill \\
- 1\ \ \,\,0\ \ \,\,5\ \ \hfill \\
\end{gathered} \right| = 5948 $, તો $\lambda $ મેળવો.
બે પાસાને ઉછાળવામાં આવે છે. તેમની પરના અંકોને $\lambda$ અને $\mu$ લેવામાં આવે છે અને સમીકરણ સંહતિ
$x+y+z=5$ ; $x+2 y+3 z=\mu$ ; $x+3 y+\lambda z=1$
ને બનાવમાં આવે છે.જો $\mathrm{p}$ એ સમીકરણ સંહતિને એકાકી ઉકેલ હોય તેની સંભાવના દર્શાવે છે અને $\mathrm{q}$ એ સમીકરણ સંહતિનો ઉકેલગણ ખાલીગણ છે તેની સંભાવના દર્શાવે છે તો