The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
${5^{1/2}}[\sqrt {(11)} + 1]$
${5^{1/2}}[\sqrt {(11)} - 1]$
${5^{1/4}}[\sqrt {(11)} + 1]$
${5^{1/4}}[\sqrt {(11)} - 1]$
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
The value of the fifth root of $10^{10^{10}}$ is
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $