The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is

  • A

    ${5^{1/2}}[\sqrt {(11)} + 1]$

  • B

    ${5^{1/2}}[\sqrt {(11)} - 1]$

  • C

    ${5^{1/4}}[\sqrt {(11)} + 1]$

  • D

    ${5^{1/4}}[\sqrt {(11)} - 1]$

Similar Questions

For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has