If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
$11/48$
$11/24$
$11/8$
$11/96$
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$