If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

  • A

    $11/48$

  • B

    $11/24$

  • C

    $11/8$

  • D

    $11/96$

Similar Questions

$\root 4 \of {(17 + 12\sqrt 2 )} = $

$\sqrt {(3 + \sqrt 5 )} $ is equal to

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$