If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
$11/48$
$11/24$
$11/8$
$11/96$
$\root 4 \of {(17 + 12\sqrt 2 )} = $
$\sqrt {(3 + \sqrt 5 )} $ is equal to
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$