If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

  • A

    $11/48$

  • B

    $11/24$

  • C

    $11/8$

  • D

    $11/96$

Similar Questions

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is

If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$

If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$

Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are

Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$