If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

  • A

    $11/48$

  • B

    $11/24$

  • C

    $11/8$

  • D

    $11/96$

Similar Questions

If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $

$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is

${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $

If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $