If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
$11/48$
$11/24$
$11/8$
$11/96$
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$