For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
$1$
$x$
Does not exist
None of these
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are