For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
$1$
$x$
Does not exist
None of these
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
$\root 4 \of {(17 + 12\sqrt 2 )} = $
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is