The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

  • A

    One solution

  • B

    Two solution

  • C

    Four solution

  • D

    No solution

Similar Questions

${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$

${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

The value of the fifth root of $10^{10^{10}}$ is

  • [KVPY 2021]