The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
One solution
Two solution
Four solution
No solution
If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is