If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $

  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    None of these

Similar Questions

If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is

  • [KVPY 2012]