If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $

  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    None of these

Similar Questions

If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is

The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is

  • [KVPY 2012]

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $