If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $
$0$
$1$
$-1$
None of these
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$