${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
Rational
Surd
Multiple of $\sqrt 7 $
None of these
The value of the fifth root of $10^{10^{10}}$ is
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.