The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is
$0$
${A^2} - {B^2}$
$\overrightarrow B \times \overrightarrow A $
$2(\overrightarrow B \times \overrightarrow A )$
Obtain the scalar product of unit vectors in Cartesian co-ordinate system.
colum $I$ | colum $II$ |
$(A)$ $|A+B|$ | $(p)$ $\frac{\sqrt{3}}{2} x$ |
$(B)$ $|A-B|$ | $(q)$ $x$ |
$(C)$ $A \cdot B$ | $(r)$ $\sqrt{3} x$ |
$(D)$ $|A \times B|$ | $(s)$ None |
The resultant of $\vec{A} \times 0$ will be equal to
If $\overrightarrow A \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-
$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A = 2\widehat i + 3\widehat j$ and $\overrightarrow B = \widehat i + \widehat j$. The magnitude of the component (projection) of $\overrightarrow A$ on $\overrightarrow B$ is