The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is

  • A

    $0$

  • B

    ${A^2} - {B^2}$

  • C

    $\overrightarrow B \times \overrightarrow A $

  • D

    $2(\overrightarrow B \times \overrightarrow A )$

Similar Questions

Obtain the scalar product of unit vectors in Cartesian co-ordinate system.

Two vectors $A$ and $B$ have equal magnitude $x$. Angle between them is $60^{\circ}$. Then, match the following two columns.
colum $I$ colum $II$
$(A)$ $|A+B|$ $(p)$ $\frac{\sqrt{3}}{2} x$
$(B)$ $|A-B|$ $(q)$ $x$
$(C)$ $A \cdot B$ $(r)$ $\sqrt{3} x$
$(D)$ $|A \times B|$ $(s)$ None

The resultant of $\vec{A} \times 0$ will be equal to

  • [AIPMT 1992]

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A  = 2\widehat i + 3\widehat j$ and $\overrightarrow B  = \widehat i + \widehat j$. The magnitude of  the component (projection) of $\overrightarrow A$ on $\overrightarrow  B$ is