If $\overrightarrow A \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-
$\overrightarrow B$ is parallel to $\overrightarrow C + \overrightarrow D$
$\overrightarrow A$ is perpendicular to $\overrightarrow C$
Component of $\overrightarrow C$ along $\overrightarrow A = $ component of $\overrightarrow D$ along $\overrightarrow A$
Component of $\overrightarrow C$ along $\overrightarrow A = -$ component of $\overrightarrow D $ along $\overrightarrow A$
Show that the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.
Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is
Explain right hand screw law.