If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

  • A

    $\overrightarrow B$ is parallel to $\overrightarrow C + \overrightarrow D$

  • B

    $\overrightarrow A$ is perpendicular to $\overrightarrow C$

  • C

    Component of $\overrightarrow C$ along $\overrightarrow A  = $ component of $\overrightarrow D$ along $\overrightarrow A$

  • D

    Component of $\overrightarrow C$ along $\overrightarrow A  = -$ component of $\overrightarrow D $ along $\overrightarrow A$

Similar Questions

Show that the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-

If two vectors $2\hat i + 3\hat j - \hat k$ and $ - 4\hat i - 6\hat j + \lambda \hat k$ are parallel to each other then value of $\lambda$ be

Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is

  • [JEE MAIN 2019]

Explain right hand screw law.