Obtain the scalar product of unit vectors in Cartesian co-ordinate system.
Since $\hat{i}, \hat{j}$ and $\hat{k}$ are the unit vectors in the direction of $\mathrm{X}, \mathrm{Y}$ and $\mathrm{Z}$ in Cartesian co-ordinate system.
$(i)$ $\hat{i} \cdot \hat{i}=(1)(1) \cos 0^{\circ} \quad[\because|\hat{i}|=1$, and $\hat{i} \| \hat{i}]$
$\therefore \hat{i} \cdot \hat{i}=1 \quad\left[\because \cos 0^{\circ}=1\right]$
similarly $\hat{j} \cdot \hat{j}=1$ and $\hat{k} \cdot \hat{k}=1$
$(ii)$ $\hat{i} \cdot \hat{j}=(1)(1) \cos 90^{\circ} \quad[\because|\hat{i}|=1,|\hat{j}|=1$ and $\hat{i} \perp \hat{j}]$
$\therefore \hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{i}=0 \quad\left[\because \cos 90^{\circ}=0\right]$
similarly, $\quad \hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{j}=0$
$\hat{k} \cdot \hat{i}=\hat{i} \cdot \hat{k}=0$
Let $\vec A\, = \,(\hat i\, + \,\hat j)\,$ and $\vec B\, = \,(2\hat i\, - \,\hat j)\,.$ The magnitude of a coplanar vector $\vec C$ such that $\vec A\cdot \vec C\, = \,\vec B\cdot \vec C\, = \vec A\cdot \vec B$ is given by
The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be
Explain the kinds of multiplication operations for vectors.
Two forces ${\vec F_1} = 5\hat i + 10\hat j - 20\hat k$ and ${\vec F_2} = 10\hat i - 5\hat j - 15\hat k$ act on a single point. The angle between ${\vec F_1}$ and ${\vec F_2}$ is nearly ....... $^o$
Vector product of two vectors $2\hat i\, + \,\hat j\,$ and $\hat i\, + \,2\hat j\,$ is