$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A = 2\widehat i + 3\widehat j$ and $\overrightarrow B = \widehat i + \widehat j$. The magnitude of the component (projection) of $\overrightarrow A$ on $\overrightarrow B$ is
$5 / \sqrt 2$
$3 / \sqrt 2$
$7 / \sqrt 2$
$1 / \sqrt 2$
For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . ..
If $\vec A = 2\hat i + \hat j - \hat k,\,\vec B = \hat i + 2\hat j + 3\hat k$ and $\vec C = 6\hat i - 2j - 6\hat k$ then the angle between $(\vec A + \vec B)$ and $\vec C$ wil be ....... $^o$
If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors