संख्याओं $1$ व $64$ के मध्य दो गुणोत्तर माध्य क्रमश: होंगे
$1$ और $64$
$4$ और $16$
$2$ और $16$
$8$ और $16$
गुणनफल $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ $\infty$ तक बराबर है
यदि किसी अनंत गुणोत्तर श्रेणी का प्रथम पद, शेष पदों के योग के दो गुने के बराबर हो, तो श्रेणी का सार्वानुपात होगा
यदि किसी गुणोत्तर श्रेणी का $4$ वाँ, $10$ वाँ तथा $16$ वाँ पद क्रमश: $x, y$ तथा $z$ हैं, तो सिद्ध कीजिए कि $x, y, z$ गुणोत्तर श्रेणी में हैं।
निम्नलिखित श्रेणियों के $n$ पदों का योग ज्ञात कीजिए।
$5+55+555+\ldots$
यदि गुणोत्तर श्रेणी $\left\{ {{a_n}} \right\}$ में,$\;{a_1} = 3,\;{a_n} = 96$ व ${S_n} = 189$, तब $n$ का मान है