यदि किसी गुणोत्तर श्रेणी का $4$ वाँ, $10$ वाँ तथा $16$ वाँ पद क्रमश: $x, y$ तथा $z$ हैं, तो सिद्ध कीजिए कि $x, y, z$ गुणोत्तर श्रेणी में हैं।
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given condition,
$a_{4}=a r^{3}=x$ .......$(1)$
$a_{10}=a r^{9}=y$ .......$(2)$
$a_{16}=a r^{15}=z$ .......$(3)$
Dividing $(2)$ by $(1),$ we obtain
$\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}$
Dividing $(3)$ by $(2),$ we obtain
$\frac{z}{y}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{z}{y}=r^{6}$
$\therefore \frac{y}{x}=\frac{z}{y}$
Thus, $x, y, z$ are in $G.P.$
किसी गुणोत्तर श्रेणी का $5$ वाँ, $8$ वाँ तथा $11$ वाँ पद क्रमशः $p, q$ तथा $s$ हैं तो दिखाइए कि $q^{2}=p s$.
मान लिजिए $A _1, A _2, A _3, \ldots \ldots$ धनात्मक वास्तविक संख्याओं की वर्धमान गुणोत्तर श्रेणी है यदि $A _1 A _3 A _5 A _7=\frac{1}{1296}$ तथा $A _2+ A _4=\frac{7}{36}$ हो तब $A _6+ A _8+ A _{10}$ का मान होगा
माना $\left\{a_{\mathrm{k}}\right\}$ तथा $\left\{\mathrm{b}_{\mathrm{k}}\right\}, \mathrm{k} \in \mathbb{N}$, दो G.P. है, जिनके सार्व अनुपात क्रमशः $r_1$ तथा $r_2$ है और $a_1=b_1=4$, $\mathrm{r}_1<\mathrm{r}_2$ है। माना $\mathrm{c}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}, \mathrm{k} \in \mathbb{N}$ है। यदि $\mathrm{c}_2=5$ तथा $\mathrm{c}_3=\frac{13}{4}$ है तो $\sum_{\mathrm{k}=1}^{\infty} \mathrm{c}_{\mathrm{k}}-\left(12 \mathrm{a}_6+8 \mathrm{~b}_4\right)$ बराबर है________.
यदि $a,\;b,\;c,\;d$ भिन्न वास्तविक संख्यायें ऐसी हों कि $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$ हो, तब $a,\;b,\;c,\;d$ होंगे
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता हैं कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस शंखला को जारी रखे। यह कल्पना करके कि शृखला न टूटे तो $8$ वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च $50$ पैसे है।