भुजा $a$ वाले एक वर्ग के कोनों पर तीन आवेश $q / 2$, $q$ और $q / 2$ चित्रानुसार रखे हैं। वर्ग के कोने $D$ पर विद्युत क्षेत्र $(E)$ का परिमाण होगा
$\frac{ q }{4 \pi \epsilon_{0} a ^{2}}\left(\frac{1}{\sqrt{2}}+\frac{1}{2}\right)$
$\frac{ q }{4 \pi \in_{0} a ^{2}}\left(1+\frac{1}{\sqrt{2}}\right)$
$\frac{ q }{4 \pi \epsilon_{0} a ^{2}}\left(1-\frac{1}{\sqrt{2}}\right)$
$\frac{ q }{4 \pi \in_{0} a ^{2}}\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)$
दो एकसमान बिन्दु आवेश एक दूसरे से $d$ दूरी पर स्थित है। दोनों आवेशों को जोड़ने वाली रेखा पर किसी एक आवेश से $x$ दूरी पर बिन्दु $P$ है $P$ पर विद्युत क्षेत्र $E$ है। निम्न में से कौनसा ग्राफ $E$ और $x$ के मध्य सही ग्राफीय निरूपण व्यक्त करता है। यहाँ $x$ का मान शून्य से लेकर $d$ से कुछ कम तक है
समान द्रव्यमान तथा आवेश के दो एकसमान अचालक ठोस गोलों को समान लम्बाई की दो अचालक, द्रव्यमानहीन डोरियों द्वारा एक उभयनिष्ठ बिन्दु से वायु में लटकाया जाता है। साम्यावस्था पर, डोरियों के मध्य कोण $\alpha$ है। अब गोलों को $800 kg m ^{-3}$ घनत्व तथा परावैद्युतांक $21$ के परावैद्युत द्रव में डुबाया जाता है। यदि डुबाने के बाद डोरियों के मध्य कोण समान रहता है, तब
$(A)$ गोलों के मध्य विद्युत बल अपरिवर्तित रहता है।
$(B)$ गोलों के मध्य विद्युत बल घटता है।
$(C)$ गोलों का द्रव्यमान घनत्व $840 kg m ^{-3}$ है।
$(D)$ गोलों को सम्भालने वाली डोरियों में तनाव अपरिवर्तित रहता है।
पाँच बिन्दु आवेश प्रत्येक का परिमाण $‘q’$ है एक समषटभुज के पाँच कोनों पर चित्रानुसार रखे हैं, एवं केन्द्र $‘O’$ पर परिणामी विद्युत क्षेत्र $\vec E$ है। केन्द्र पर परिणामी विद्युत क्षेत्र $6\vec E$ प्राप्त करने के लिये छठे शीर्ष पर कितना आवेश रखना होगा
द्रव्यमान $M$ तथा आवेश $q$ का एक पिण्ड एक स्प्रिंग नियतांक $k$ की स्प्रिंग से जुड़ा है। यह पिण्ड $x-$ दिशा में अपनी साम्यावस्था $x=0$ के सापेक्ष आयाम $A$ से दोलन कर रहा है। $x-$ दिशा में एक विघुत क्षेत्र $E$ लगाया जाता है। निम्न कथनों में कौन सा कथन सत्य है ?
$5$ नेनोकूलॉम (परिमाण) के अनन्त संख्या में आवेश $X$-अक्ष के अनुदिश $x = 1$सेमी, $x = 2$ सेमी, $x = 4$ सेमी $x = 8$ सेमी. ………. पर रखे गये हैं। इस व्यवस्था में यदि दो क्रमागत आवेश विपरीत प्रकृति के हों तो $x = 0$ पर न्यूटन कूलॉम में विद्युत क्षेत्र होगा $\left( {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,N - {m^2}/{c^2}} \right)$