एक गुणोत्तर श्रेणी का तीसरा पद, पहले पद का वर्ग है। यदि दूसरा पद $8$ है, तब छँठा पद है
$120$
$124$
$128$
$132$
माना $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$. वर्धमान धनात्मक संख्याओं की एक $GP$ है। यदि चौथे व छटवें पदों का गुणनफल 9 है और पाँचवे व सातवें पदों का योग 24 है, तब $\mathrm{a}_1 \mathrm{a}_9+\mathrm{a}_2 \mathrm{a}_4 \mathrm{a}_9+\mathrm{a}_5+\mathrm{a}_7$ बराबर है___________________.
एक गुणोत्तर श्रेढ़ी $(G.P.)$ के तीसरे तथा चौथे पदों का योग $60$ है तथा इसके प्रथम तीन पदों का गुणनफल $1000$ है। यदि इस गुणोत्तर श्रेढ़ी का प्रथम पद धनात्मक है, तो इसका सातवां पद है
मान लें $M=2^{30}-2^{15}+1$ एवं $M^2$ को आधार $2$ पर व्यक्त किया जाता है. $M^2$ के आधार $2$ के इस निरूपण में कितने $1$ की संख्या है?
यदि दो संख्याओं के मध्य दो गुणोत्तर माध्य ${G_1}$ व ${G_2}$ तथा समान्तर माध्य $A$ रखे जावें, तब $\frac{{G_1^2}}{{{G_2}}} + \frac{{G_2^2}}{{{G_1}}}$ का मान होगा
निम्नलिखित श्रेणियों के $n$ पदों का योग ज्ञात कीजिए।
$6+.66+.666+\ldots$