मान लें $M=2^{30}-2^{15}+1$ एवं $M^2$ को आधार $2$ पर व्यक्त किया जाता है. $M^2$ के आधार $2$ के इस निरूपण में कितने $1$ की संख्या है?
$29$
$30$
$59$
$60$
यदि $y = x + {x^2} + {x^3} + .......\,\infty ,\,$ तब $x = $
श्रेणी $3 + 4\frac{1}{2} + 6\frac{3}{4} + ......$ के पाँच पदों का योग होगा
एक गुणोत्तर श्रेणी में तीसरा पद $24$ तथा $6$ वाँ पद $192$ है, तो $10$ वाँ पद ज्ञात कीजिए।
यदि किसी गुणोत्तर श्रेणी का $(p + q)$ वाँ पद $m$ है और $(p - q)$ वाँ पद $n$ है, तो श्रेणी का $p$ वाँ पद होगा
निम्नलिखित श्रेणियों के $n$ पदों का योग ज्ञात कीजिए।
$5+55+555+\ldots$