શ્રેણી $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ નો સરવાળો મેળવો 

જ્યાં $Cr's$ એ $(1 + x)^n, n \in N$ ના વિસ્તરણમાં સહગુણક દર્શાવે છે 

  • A

    $(a + 2nb)2^n$

  • B

    $(2a + nb)2^n$

  • C

    $(a +nb)2^{n - 1}$

  • D

    $(2a + nb)2^{n - 1}$

Similar Questions

જો ${}^{21}{C_1} + 3.{}^{21}{C_3} + 5.{}^{21}{C_5} + ......19{}^{21}{C_{19}} + 21.{}^{21}{C_{21}} = k$ હોય તો $k$ નો અવિભાજય અવયવ મેળવો 

${(1 + x - 3{x^2})^{2134}}$ ના સહગુણકનો સરવાળો મેળવો.

જો $C_r= ^{100}{C_r}$ , હોય તો $1.C^2_0 - 2.C^2_1 + 3.C^2_3 - 4.C^2_0 + 5.C^2_4 - .... + 101.C^2_{100}$ ની કિમત મેળવો 

જો ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ તો ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $

  • [IIT 1966]

${\left( {1 - x - {x^2} + {x^3}} \right)^6}$ નાં વિસ્તરણમાં $x^7$ નો સહગુણક મેળવો. 

  • [AIEEE 2011]