એક સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $S$ હોય અને તેનો ગુણાકાર $27$ થાય તો તે બધા માટે $S$ ....... માં આવેલ છે
$[-3, \infty)$
$(-\infty, 9]$
$(-\infty,-9] \cup[3, \infty)$
$(-\infty,-3] \cup[9, \infty)$
જો $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ હોય તો $a$, $b$, $c$, $d$ એ ......... શ્રેણીમાં છે
ધારો કે ચાર જુદી જુદી ધન સંખ્યાઓ $a_2$, $a_2$, $a_3$, $a_4$ સમગુણોત્તર શ્રેણીમાં છે. $b_1$ = $a_1$, $b_2$ = $b_1$ + $a_2$, $b_3$ = $b_2$ + $a_3$ અને $b_4$ = $b_3$ + $a_4$ લો.
વિધાન $- I$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સમાંતર શ્રેણીમાં નથી કે સમગુણોત્તરમાં પણ નથી.
વિધાન $- II$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સ્વરીત શ્રેણીમાં છે.
સમગુણોત્તર શ્રેણીનાં પ્રથમ ત્રણ પદોનો સરવાળો $\frac{13}{12}$ છે. અને તેમનો ગુણોતર $-1$ છે. તો સામાન્ય ગુણોતર અને તે પદ શોધો.
સમગુણોત્તર શ્રેણીનાં ત્રણ ક્રમિક પદનો ગુણાકાર $216$ છે અને તેનાં બે-બે પદોના ગુણાકારનો સરવાળો $156$ છે, તો આ પદ.... હશે.