एक समांतर श्रेणी के प्रथम चार पदों का योगफल $56$ है। अंतिम चार पदों का योगफल $112$ है। यदि इसका प्रथम पद $11$ है, तो पदों की संख्या ज्ञात कीजिए।
Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$
Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$
Sum of last four terms
$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$
$=4 a+(4 n-10) d$
According to the given condition,
$4 a+6 d=56$
$\Rightarrow 4(11)+6 d=56$ [ Since $a=11$ (given) ]
$=6 d=12$
$=d=2$
$\therefore 4 a+(4 n-10) d=112$
$\Rightarrow 4(11)+(4 n-10) 2=112$
$\Rightarrow(4 n-10) 2=68$
$\Rightarrow 4 n-10=34$
$\Rightarrow 4 n=44$
$\Rightarrow n=11$
Thus, the number of terms of the $A.P.$ is $11 .$
यदि $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}, a$ तथा $b$ के मध्य समांतर माध्य हो तो $n$ का मान ज्ञात कीजिए।
यदि $\log _e a, \log _e b, \log _e c$ एक $A.P.$ में हैं तथा $\log _e a-\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ भी एक $A.P.$ में हैं, तो $a: b: c$ बराबर है ..................
यदि $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ समान्तर श्रेणी में हों, तो $x$ का मान होगा
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ जहाँ $n \geq 2$
यदि किसी समान्तर श्रेणी का प्रथम पद $10$ व अन्तिम पद $50$ है तथा सभी पदों का योग $300$ हो, तो पदों की संख्या है