यदि $\log _e a, \log _e b, \log _e c$ एक $A.P.$ में हैं तथा $\log _e a-\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ भी एक $A.P.$ में हैं, तो $a: b: c$ बराबर है ..................
$9: 6: 4$
$16: 4: 1$
$25: 10: 4$
$6: 3: 2$
यदि समीकरण ${x^3} - 12{x^2} + 39x - 28 = 0$ के मूल समान्तर श्रेणी में हों, तो श्रेणी का सार्वान्तर होगा
यदि $\tan \left(\frac{\pi}{9}\right), x , \tan \left(\frac{7\pi}{18}\right)$ एक समांतर श्रेढ़ी में हैं तथा $\tan \left(\frac{\pi}{9}\right), y , \tan \left(\frac{5 \pi}{18}\right)$ भी एक समांतर श्रेढ़ी में हैं. तो $| x -2 y |$ बराबर है
यदि एक शून्येतर समान्तर श्रेढ़ी का $19$ वां पद शून्य है, तो इसका ($49$ वाँ) : ($29$ वाँ पद) है
यदि ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ समान्तर श्रेणी में हैं तथा ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, तो ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $
माना कि $AP ( a ; d )$ एक अनंत समान्तर श्रेणी (infinite arithmetic progression) के पदों का समुच्चय (set) है जिसका प्रथम पद $a$ तथा सर्वान्तर (common difference) $d >0$ है। यदि $AP (1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap AP (3 ; 7)=$ $AP ( a ; d )$ है, तब $a + d$ बराबर . . . . .