The sum of the first four terms of an $A.P.$ is $56 .$ The sum of the last four terms is $112.$ If its first term is $11,$ then find the number of terms.
Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$
Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$
Sum of last four terms
$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$
$=4 a+(4 n-10) d$
According to the given condition,
$4 a+6 d=56$
$\Rightarrow 4(11)+6 d=56$ [ Since $a=11$ (given) ]
$=6 d=12$
$=d=2$
$\therefore 4 a+(4 n-10) d=112$
$\Rightarrow 4(11)+(4 n-10) 2=112$
$\Rightarrow(4 n-10) 2=68$
$\Rightarrow 4 n-10=34$
$\Rightarrow 4 n=44$
$\Rightarrow n=11$
Thus, the number of terms of the $A.P.$ is $11 .$
When $9^{th}$ term of $A.P$ is divided by its $2^{nd}$ term then quotient is $5$ and when $13^{th}$ term is divided by $6^{th}$ term then quotient is $2$ and Remainder is $5$ then find first term of $A.P.$
$150$ workers were engaged to finish a piece of work in a certain number of days. $4$ workers dropped the second day, $4$ more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is
If the sum of the series $2 + 5 + 8 + 11............$ is $60100$, then the number of terms are
The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is
Let $a_n$ be a sequence such that $a_1 = 5$ and $a_{n+1} = a_n + (n -2)$ for all $n \in N$, then $a_{51}$ is