શ્રેણી $3 +7 + 1 1 + 15+ ... ......$અને $1 +6+ 11 + 16+ ......$ના પ્રથમ $20$ સામાન્ય પદોનો સરવાળો મેળવો.
$4000$
$4020$
$4200$
$4220$
જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:
અચળ $p, q$ માટે જે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $\left(p n+q n^{2}\right),$ હોય, તેનો સામાન્ય તફાવત શોધો. છે.
સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને $q$ મું પદ $p$ હોય, તો તેનું $r$ મું પદ...... થશે.
જો $a, b$ અને $c$ એ સમાંતર શ્રેણીનાં અનુક્રમે પ્રથમ, દ્વિતીય અને અંતિમ પદ હોય, તો આ પદની કુલ સંખ્યા...... છે.
જો $a_1, a_2 , a_3,.....$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\frac{{{a_1} + {a_2} + .... + {a_p}}}{{{a_1} + {a_2} + {a_3} + ..... + {a_q}}} = \frac{{{p^3}}}{{{q^3}}};p \ne q$ તો $\frac{{{a_6}}}{{{a_{21}}}}$ મેળવો.