જો $a_1, a_2 , a_3,.....$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\frac{{{a_1} + {a_2} + .... + {a_p}}}{{{a_1} + {a_2} + {a_3} + ..... + {a_q}}} = \frac{{{p^3}}}{{{q^3}}};p \ne q$ તો $\frac{{{a_6}}}{{{a_{21}}}}$ મેળવો.
$\frac{{41}}{{11}}$
$\frac{{31}}{{121}}$
$\frac{{11}}{{41}}$
$\frac{{121}}{{1861}}$
જો સમાંતર શ્રેણીનું પ્રથમ પદ $a$ સામાન્ય તફાવત $1 $ અને અંતિમ પદ $b$ પદ, હોય, તો તેનો સરવાળો કેટલો થાય ?
શ્રેણીઓ $S _1=3+7+11+15+19+\ldots$ અને $S _2=1+6+11+16+21+\ldots$ નું સામાન્ય $8$મું પદ $............$ છે.
જો $\left\{a_{i}\right\}_{i=1}^{n}$ એ સામાન્ય તફાવત 1 હોય તેવી સમાંતર શ્રેણી છે, જ્યાં $n$ એ યુગ્મ પૂર્ણાંક હોય અને $\sum \limits_{ i =1}^{ n } a _{ i }=192,\sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$ હોય, તો $n$ = ........
જો $a, b, c, d, e, f$ સમાંતર શ્રેણીમાં હોય, તો $e - c = …..$
$3 + 7 + 11 +....+ 407$ સમાંતર શ્રેણીમાં છેલ્લેથી $20$ મું પદ ......છે.