${(1 + x - 3{x^2})^{2163}}$ के विस्तार में गुणांकों का योग होगा
$0$
$1$
$ - 1$
${2^{2163}}$
${(1 + x)^n}$के प्रसार में $x$ की विषम घातों के गुणांकों का योग है
$x \in R , x \neq-1$ के लिए, यदि $(1+x)^{2016}+x(1+x)^{2015}+x^{2}(1+x)^{2014}$ $+\ldots .+x^{2016}=\sum_{i=0}^{2016} a_{i} x^{i}$ है, तो $a_{17}$ बराबर है
${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा
' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है
यदि $a$ तथा $d$ दो सम्मिश्र संख्यायें हों, तब $a\,{C_0} - (a + d)\,{C_1} + (a + 2d)\,{C_2} - ........ + .....$ के $(n + 1)$ पदों का योग है