સમીકરણ ${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$ નો ઉકેલગણ.......... છે 

  • A

    ખાલી ગણ 

  • B

    એકાકી ગણ 

  • C

    બે ઘટક ધરાવતો ગણ 

  • D

    અનંત ગણ 

Similar Questions

 જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta  +  \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta  = $

ચલ $x$ એ સમીકરણ $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x}  = \sqrt 3$ એ ક્યાં અંતરાલમાં આવે છે ?

ત્રિપુટી $(a_1 , a_2 , a_3)$ ના બધા શક્ય ઉકેલોની સંખ્યા ................. મળે કે જેથી બધા $x$ માટે $a_1+ a_2 \,cos \, 2x + a_3 \, sin^2 x = 0$ થાય 

સમીકરણ ${\rm{cosec}}\theta + 2 = 0$ નું સમાધાન કરે તેવી $\theta (0 < \theta < {360^o})$ ની કિમતો મેળવો.

જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =