किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल $16$ है तथा अगले तीन पदों का योग $128$ है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा $n$ पदों का योगफल ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the $G.P.$ be $a, a r, a r^{2}, a r^{3}, \ldots .$ According to the given condition,

$a+a r+a r^{2}=16$ and $a r^{3}+a r^{4}+a r^{5}=128$

$\Rightarrow a\left(1+r+r^{2}\right)=16$        .........$(1)$

$a r^{3}\left(1+r+r^{2}\right)=128$           .........$(2)$

Dividing equation $(2)$ by $(1),$ we obtain

$\frac{a r^{3}\left(1+r+r^{3}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}$

$\Rightarrow r^{3}=8$

$\therefore r=2$

Substituting $r=2$ in $(1),$ we obtain $a(1+2+4)=16$

$\Rightarrow a(7)=16$

$\Rightarrow a=\frac{16}{7}$

$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$\Rightarrow S_{n}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)$

Similar Questions

यदि किसी गुणोत्तर श्रेणी का तीसरा पद $4$ हो, तो इसके प्रथम $5$ पदों का गुणनफल होगा

  • [IIT 1982]

यदि $a _1( >0), a _2, a _3, a _4, a _5$ गुणोत्तर श्रेणी में हो, $a _2+ a _4=2 a _3+1$ तथा $3 a _2+ a _3=2 a _4$ है, तो $a _2+ a _4+2 a _5$ का मान होगा-

  • [JEE MAIN 2022]

यदि $y = x + {x^2} + {x^3} + .......\,\infty ,\,$ तब $x = $

यदि $y - x$ तथा $y - z$ के बीच का हरात्मक माध्य $2(y - a)$ है, तब $x - a,\;y - a,\;z - a$ हैं

दो संख्याओं का योगफल उनके गुणोत्तर माध्य का $6$ गुना है तो दिखाइए कि संख्याएँ $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ के अनुपात में हैं।