गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
एक गुणोत्तर श्रेणी के तीन पदों का योगफल $\frac{39}{10}$ हैं तथा उनका गुणनफल $1$ है। सार्व अनुपात तथा पदों को ज्ञात कीजिए
Let $\frac{a}{r}, a,$ ar be the first three terms of the $G.P.$
$\frac{a}{r}+a+a r=\frac{39}{10}$ ..........$(1)$
$\left(\frac{a}{r}\right)(a)(a r)=1$ .........$(2)$
From $(2),$ we Obtain $a^{3}=1$
$\Rightarrow a=1$ (Considering real roots only)
Substituting $a=1$ in equation $(1),$ we obtain
$\frac{1}{r}+1+r=\frac{39}{10}$
$\Rightarrow 1+r+r^{2}=\frac{39}{10} r$
$\Rightarrow 10+10 r+10 r^{2}-39 r=0$
$\Rightarrow 10 r^{2}-29 r+10=0$
$\Rightarrow 10 r^{2}-25 r-4 r+10=0$
$\Rightarrow 5 r(2 r-5)-2(2 r-5)=0$
$\Rightarrow(5 r-2)(2 r-5)=0$
$\Rightarrow r=\frac{2}{5}$ or $\frac{5}{2}$
Thus, the three terms of $G.P.$ are $\frac{5}{2}, 1$ and $\frac{2}{5}$
यदि $a,\;b,\;c,\;d$ भिन्न वास्तविक संख्यायें ऐसी हों कि $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$ हो, तब $a,\;b,\;c,\;d$ होंगे
एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता हैं कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस शंखला को जारी रखे। यह कल्पना करके कि शृखला न टूटे तो $8$ वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च $50$ पैसे है।
यदि किसी गुणोत्तर श्रेणी के $n$ पदों का योग $S$ एवं गुणनफल $P$ है तथा उनके व्युत्क्रमों का योग $R$ है, तो ${P^2}$ का मान है
मान लिजिए $A _1, A _2, A _3, \ldots \ldots$ धनात्मक वास्तविक संख्याओं की वर्धमान गुणोत्तर श्रेणी है यदि $A _1 A _3 A _5 A _7=\frac{1}{1296}$ तथा $A _2+ A _4=\frac{7}{36}$ हो तब $A _6+ A _8+ A _{10}$ का मान होगा
यदि किसी समान्तर श्रेणी के $p$ वें, $q$ वें, $r$ वें और $s$ वें पद गुणोत्तर श्रेणी में हैं, तो $(p - q),\;(q - r),\;(r - s)$ होंगे