एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने का निर्देश देता है, तथा उनसे यह भी करने को कहता हैं कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस शंखला को जारी रखे। यह कल्पना करके कि शृखला न टूटे तो $8$ वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च $50$ पैसे है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The numbers of letters mailed forms a $G.P.:$ $4,4^{2}, \ldots .4^{8}$

First term $=4$

Common ratio $=4$

Number of terms $=8$

It is known that the sum of n terms of a $G.P.$ is given by

$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$\therefore S_{8}=\frac{4\left(4^{8}-1\right)}{4-1}$

$=\frac{4(65536-1)}{3}=\frac{4(65535)}{3}=4(21845)=87380$

It is given that the cost to mail one letter is $50$ paisa.

$\therefore $ Cost of mailing $87380$ letters $= Rs .87380 \times \frac{50}{100}= Rs .43690$

Thus, the amount spent when $8^{\text {th }}$ set of letter is mailed is $Rs.$ $43690$ .

Similar Questions

यदि धनात्मक पदों की एक गुणोत्तर श्रेढ़ी के दूसरे, तीसरे तथा चौथे पदों का योगफल $3$ है तथा इसके छठे, सातवें और आठवें पदों का योगफल $243$ है, तो इस गुणोत्तर श्रेढ़ी के प्रथम $50$ पदों का योगफल है

  • [JEE MAIN 2020]

यदि $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + .......\infty $, तो $r$ का मान होगा

माना धनात्मक संख्याएँ $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4$ तथा $\mathrm{a}_5$ एक $G.P.$ में है। माना इसके माध्य तथा प्रसरण क्रमशः $\frac{31}{10}$ तथा $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असभाज्य हैं। यदि इन संख्याओं के व्युत्क्रमों का माध्य $\frac{31}{40}$ है तथा $a_3+a_4+a_5=14$ है, तो $m+n$ बराबर है_____________।

  • [JEE MAIN 2023]

श्रेणी $0.7,0.77,0.777, \ldots \ldots$, के प्रथम $20$ पदों का योग है

  • [JEE MAIN 2013]

किसी गुणोत्तर श्रेणी के प्रथम दो पदों का योग $1$ है तथा इस श्रेणी का प्रत्येक पद अपने पूर्व के पद का दुगना है, तो इसका प्रथम पद होगा