$1 + 3 + 5 + 7 + .........$ $n$ पदों तक का योग है  

  • A

    ${(n + 1)^2}$

  • B

    ${(2n)^2}$

  • C

    ${n^2}$

  • D

    ${(n - 1)^2}$

Similar Questions

माना एक समांतर श्रेढ़ी के प्रथम तीन पदों का योग $39$ है तथा इसके अंतिम चार पदों का योग $178$ है। यदि इस समांतर श्रेढ़ी का प्रथम पद $10$ है, तो इस समांतर श्रेढ़ी का माध्यक है

  • [JEE MAIN 2015]

यदि तीन संख्यायें गुणोत्तर श्रेणी में हैं, तो उनके लघुगुणक (Logarithms) होंगे

माना $a_{1}, a_{2}, a_{3}, \ldots ., a_{49}$ एक समांतर श्रेढ़ी में ऐसे है कि $\sum_{k=0}^{12} a_{4 k+1}=416$ तथा $a_{9}+a_{43}=66$ है। यदि $a_{1}^{2}+a_{2}^{2}+\ldots . .+a_{17}^{2}=140\, m$ है, तो $m$ बराबर है

  • [JEE MAIN 2018]

दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।

माना $3,6,9,12, \ldots 78$ पदों तक तथा $5,9,13$, $17, \ldots 59$ पदों तक दो श्रेणीयाँ है। तब दोनों श्रेढ़ीयों के उभयनिप्ठ पदों का योगफल है

  • [JEE MAIN 2022]