माना $3,6,9,12, \ldots 78$ पदों तक तथा $5,9,13$, $17, \ldots 59$ पदों तक दो श्रेणीयाँ है। तब दोनों श्रेढ़ीयों के उभयनिप्ठ पदों का योगफल है
$2222$
$2223$
$2224$
$2225$
मान लें कि $A B C D$ एक चतुर्भुज इस प्रकार है कि, चतुर्भुज के भीतर एक बिंदु $E$ है जो $A E=B E=C E=D E$ को संतुष्ट करता है. मान लें कि $\angle D A B, \angle A B C, \angle B C D$ एक समान्तर श्रेढ़ी $(AP)$ है. तब समुच्चय $\{\angle D A B, \angle A B C, \angle B C D\}$ का माध्य है:
समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है
यदि समीकरण $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रमों के वर्गों के योगफल के बराबर है, तो $b{c^2},\;c{a^2},\;a{b^2}$ होंगे
यदि ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, जहाँ ${S_n}$ समान्तर श्रेणी के प्रथम $n$ पदों का योग दर्शाता है, तब सार्वअन्तर है
समांतर श्रेढ़ी $3,8,13, \ldots . .373$ के उन सभी पदों, जो $3$ से विभाज्य नहीं है, का योग बराबर है________